![]() 無方向性電磁鋼板
专利摘要:
〔課題〕其係提供一種在高磁場域中低鐵損之無方向性電磁鋼板。本發明之無方向性電磁鋼板,其係包含:以質量%計,C:0.005%以下、Si:5%以下、Al:3%以下、Mn:5%以下、S:0.005%以下、P:0.2%以下、N:0.005%以下、Mo:0.001~0.04%、Ti:0.0030%以下、Nb:0.0050%以下、V:0.0050%以下,以及Zr:0.0020%以下,且含有Sb以及Sn之任1種或2種合計0.001~0.1%,殘餘部分為鐵以及不可避免的不純物之組成成分所成。 公开号:TW201319273A 申请号:TW101135546 申请日:2012-09-27 公开日:2013-05-16 发明作者:Yoshihiko Oda;Hiroaki Toda;Tadashi Nakanishi;Yoshiaki Zaizen 申请人:Jfe Steel Corp; IPC主号:H01F1-00
专利说明:
無方向性電磁鋼板 本發明係關於一種具優異鐵損,特別是在高磁場中的鐵損特性優異之無方向性電磁鋼板者。 在油電混合電氣自動車用馬達或電氣自動車用馬達中,被要求在啟動時或爬坡時要有大的轉距。為提升馬達轉距致使馬達尺寸大型化雖具效果性,但是因車輛重量增加有導致燃料消費增加的問題。因此此等馬達在啟動時或爬坡時,有時會設計成在以往所沒有的1.9~2.0T之高磁通密度域來使用。 但是電磁鋼板係衝裁加工成構成馬達的轉子的芯形狀來供做為該芯材,但由於隨著衝裁加工會導入應變,而與該加工前相比鐵損會惡化。因此製成馬達時,與由素材特性所預測的鐵損比較,有時馬達損失會大幅度增加。作為其對策,有時會施予750℃×2h左右之消除應力退火。同時藉由消除應力退火使結晶粒成長,藉此也可期待更一步的提升磁性特性。例如在專利文獻1揭示有藉由提高Al添加量,而使消除應力退火時的粒成長性提升來降低鐵損的技術。 專利文獻1:日本專利3458682號公報 但是本發明人等在調查後,明瞭在以往的磁通密度1.0~1.5T左右之區域可藉由消除應力退火來降低鐵損,但在高磁場域有時反而會增加鐵損,因而在此要求能穩定地降低高磁場鐵損之技術。因此本發明之目的,特別是在於提供一種在高磁場域中具有低鐵損的無方向性電磁鋼板。 本發明人等朝解決上述課題努力研究的結果,為了改善高磁場特性,得知藉由Sn或Sb與Mo之複合添加可有效抑制鋼板表層部之氮化層及氧化層的生成。 本發明係基於該見解而研創者,其具有以下的構成。 (1)一種無方向性電磁鋼板,其係包含:以質量%計,C:0.005%以下、Si:5%以下、Al:3%以下、Mn:5%以下、S:0.005%以下、P:0.2%以下、N:0.005%以下、Mo:0.001~0.04%、Ti:0.0030%以下、Nb:0.0050%以下、V:0.0050%以下,以及Zr:0.0020%以下,且含有Sb以及Sn之任1種或2種合計0.001~0.1%,殘餘部分為鐵以及不可避免的不純物之組成成分所成。 (2)如上述(1)所述之無方向性電磁鋼板,其中,前述組成成分係更含有以質量%計,Ca:0.001~0.01%、Mg:0.0005~0.005%以及REM:0.001~0.05%的1種或2種以上。 (3)如上述(1)或(2)所述之無方向性電磁鋼板,其中,前述組成成分係更含有以質量%計,Cr:0.4~5%。 (4)如上述(1)或(2)所述之無方向性電磁鋼板,其中,前述組成成分係更含有以質量%計,Ni:0.1~5%、Co:0.1~5%以及Cu:0.05~2%之1種或2種以上。 (5)如上述(3)所述之無方向性電磁鋼板,其中,前述組成成分係更含有以質量%計,Ni:0.1~5%、Co:0.1~5%以及Cu:0.05~2%之1種或2種以上。 根據本發明利用Sn及Sb之任1種或2種與Mo之複合添加,可抑制鋼板表層部之氮化層及氧化層的生成,來製造無方向性電磁鋼板,藉此可得到高磁場域中具有低鐵損的材料。〔發明之實施形態〕 以下將本發明之詳細與其限定理由一起來加以說明。另外有關以下所示之鋼板成分的「%」,除非特別事先說明,係意指「質量%」。 首先對引導本發明之實驗結果加以詳述。亦即為了對造成磁性特性之Sb的影響來調查,在包含C:0.0015%、Si:3.3%、Al:1.0%、Mn:0.2%、S:0.0005%、P:0.01%、N:0.0020%、Ti:0.0010%、Nb:0.0005%、V:0.0010%、以及Zr:0.0005%的組成;與C:0.0013%、Si:3.3%、Al:1.0%、Mn:0.2%、S:0.0006%、P:0.01%、N:0.0018%、含Mo有:0.005%、Ti:0.0010%、Nb:0.0005%、、V:0.0010%,以及Zr:0.0005%的組成中,分別在將Sb以0~0.1%的範圍中變化的鋼在實驗室熔解並進行熱間輥軋。接著對該熱間輥軋板在100%N2環境氣體中實施1000℃×30s之熱軋板退火,然後進一步冷間輥軋至板厚0.35mm,在10%H2-90%N2環境氣體中進行1000℃×10s間之精加工退火,在DX氣體中(H2:4%、CO:7%、CO2:8%、N2:殘餘部分)進行750℃×2h之消除應力退火。 將如此所得之試驗材料之Sb添加量與W19/100以及W15/100值之關係顯示於第1圖。在此以1.9T、100Hz之特性來評估鐵損是由於在油電混合電氣自動車要求大轉距的啟動以及爬坡時,係以該程度的磁通密度及頻率來使用,而W15/100是以往的評估點。由第1圖可知尤其是以Mo添加鋼在Sb為0.001%以上可大大地降低W19/100。另一方面可知W15/100在Sb為0.001%以上會降低,但相較於W19/100其降低量較少。 其次,為了調查Sb及Mo的複合添加效果會因磁通密度高低水準而有所不同的原因,而以SEM進行鋼板組織的調查。其結果在沒添加Sb及Mo的材料中,於鋼板表層部被確認出有氮化層及氧化層;在只添加Sb的鋼中,氮化層的生成變輕微,甚至在複合添加Sb及Mo的鋼中,氮化層及氧化層的生成都變輕微。該氮化層及氧化層使高磁場域的鐵損更大增加的原因,認為有如下因素。 亦即,1.5T左右的低磁場域中由於磁通密度不高,只有鋼板內部容易進行晶域壁運動結晶粒磁化,藉此就可充分通過磁通,但是為了要磁化至1.9T的高磁場域必須將鋼板全體磁化,故有必要使包含鋼板表層部之氮化層、氧化層之難以進行晶域壁運動的結晶粒也磁化,且為了將如此難以進行晶域壁運動的結晶粒磁化至高磁場域是必須要很大的能量,故可想像鐵損會變高。 在此,認為表層之氮化層及氧化層雖是在精加工退火時,以及消除應力退火時所產生的,但由於藉由添加Sb可抑制氮化,更藉由添加Mo而抑制氧化,故可大大地降低在高磁場中的鐵損。因此將Sb的下限設為0.001%。另一方面由於Sb超過了0.1%時會白白增加成本,故將上限設為0.1%。即使針對Sn進行相同的實驗也會得到相同的結果。亦即Sb與Sn為等價成分。 進一步對Mo的最佳添加量進行調查。亦即在實驗室將包含C:0.0015%、Si:3.3%、Al:1.0%、Mn:0.2%、S:0.002%、P:0.01%、N:0.0020%、Ti:0.0010%、Nb:0.0005%、V:0.0010%,Zr:0.0005%以及Sb:0.005%、且使Mo在0~0.1%的範圍變化而添加的鋼予以熔解並進行熱間輥軋。接著對該熱間輥軋板在100%N2環境氣體中實施1000℃×30s之熱軋板退火,然後進一步冷間輥軋至板厚0.20mm,在20%H2-80%N2環境氣體中進行1000℃×10s間之精加工退火,並在DX氣體中進行750℃×2h之消除應力退火。 將如此所得之實驗材料之Mo添加量與W19/100以及W15/100值之關係顯示於第2圖。由第2圖可知Mo在0.001%以上W19/100會降低,在0.04%以上W19/100會增加。另一方面,得到W15/100並不會因Mo的添加而造成鐵損減低,而Mo在0.04%以上會增加鐵損之結果。為了要調查Mo在0.001%以上會使高磁場域的鐵損降低的原因,以SEM進行了鋼板組織的調查。其結果在沒添加Mo的材料中,於鋼板表層部被確認出有氮化層及氧化層的生成,但在添加Mo的材料則觀察不出有氮化層及氧化層的生成。如此地藉由複合添加Sn及Mo來抑制氮化、氧化認為是高磁場域的鐵損降低的原因。另一方面,觀察了Mo為0.04%以上材料的組織後,觀察到了Mo系的碳氮化物。由此認為在Mo為0.04%以上的材料中,因碳氮化物的存在會妨礙晶域壁運動而增加鐵損。由以上說明將Mo設為0.001%以上0.04%以下。 其次針對各成分的限定理由加以說明。 C:0.005%以下 C由磁性時效防止的觀點來看設為0.005%以下。另外工業上很難將C含量設為0%,所以C往往含0.0005%以上。 Si:5%以下 Si係用來提升鋼板的固有阻抗的有效元素,故較佳為添加1%以上。另一方面一超過5%時,隨著飽和磁通密度的降低,磁通密度會降低故上限設為5%。 Al:3%以下 Al也與Si一樣係用來提升固有阻抗的有效元素,故較佳為添加0.1%以上。另一方面一超過3%時,隨著飽和磁通密度的降低,磁通密度會降低故上限設為3%。 Mn:5%以下 Mn係用來提升鋼板的固有阻抗的有效元素,故較佳為添加0.1%以上。另一方面一超過5%以上會使磁通密度降低所以上限設為5%。 S:0.005%以下 S一超過0.005%時,由於會析出MnS而增加鐵損故上限設為0.005%。另外S較佳係將下限設為0%,但工業上很難將S含量製成0%,所以S往往含0.0005%以上。 P:0.2%以下 P一添加超過0.2%時,鋼板會變硬故為0.2%以下為佳,較佳為設為0.1%以下。另外P較佳係將下限設為0%,但工業上很難將P含量製成0%,所以P往往含0.01%以上。 N:0.005%以下 N含量多時AlN的析出量變多,使鐵損增加故設為0.005%以下。另外N較佳係將下限設為0%,但工業上很難將N含量製成0%,所以N往往含0.001%以上。 Ti:0.0030%以下 Ti一超過0.0030%時就形成Ti系的碳氮化物,由於會使鐵損增加故上限設為0.0030%。另外Ti較佳係將下限設為0%,但工業上很難將Ti含量製成0%,所以Ti往往含0.0005%以上。 Nb:0.0050%以下 Nb一超過0.0050%時就形成Nb系的碳氮化物,由於會使鐵損增加故上限設為0.0050%。另外Nb較佳係將下限設為0%,但工業上很難將Nb含量製成0%,所以Nb往往含0.0001%以上。 V:0.0050%以下 V一超過0.0050%時就形成V系的碳氮化物,由於會使鐵損增加故上限設為0.0050%。另外V較佳係將下限設為0%,但工業上很難將V含量製成0%,所以V往往含0.0005%以上。 Zr:0.0020%以下 Zr混入時氮化物形成能力很強,故即使添加Sb、Sn、Mo也不能充分地抑制表層之氮化,致高磁場域的鐵損變高。因此Zr設為0.002%以下。另外Zr較佳係將下限設為0%,但工業上很難將Zr含量製成0%,所以Zr往往含0.0005%以上。 Sb以及Sn之任1種或2種合計0.001~0.1% Sn與Sb一樣,當添加0.001%以上時可防止精加工退火時的氮化,由於會降低鐵損,故下限設為0.001%。另一方面,當超過0.1%時會白白地增加成本故將上限設為0.1%。 以下係添加成分。 Ca:0.001~0.01%、Mg:0.0005~0.005%以及REM:0.001~0.05%之1種或2種以上 Ca是用以作為CaS析出而抑制細微之硫化物的析出,並降低鐵損的有效成分,因此較佳係添加0.001%以上。另一方面,當超過0.01%時,由於CaS的析出量會變多反而增加鐵損,故較佳係將上限設為0.01%。 Mg是用以以中介物型態作為球形來降低鐵損的有效成分,因此較佳係添加0.0005%以上。另一方面,當超過0.005%時成本會提高,故較佳係將上限設為0.005%。 REM為稀土類元素,是用以將硫化物粗大化來降低鐵損的有效成分,因此較佳係添加0.001%以上。另一方面,即使添加超過0.05%由於效果已飽和而白白地增加成本,故較佳係將上限設為0.05%。 Cr:0.4~5% Cr係用以藉由提升固有阻抗來降低鐵損的有效成分,故較佳係添加0.4%以上。另一方面,當超過5%時磁通密度會降低,故較佳係將上限設為5%。另外微量含有Cr時可抑制易產生細微之Cr碳氮化物的形成,從改善磁性特性的觀點而言,較佳係要設定為將Cr減低至0.05%以下或是添加在0.4~5%的範圍的這兩者之其中之一。另外將Cr減低至0.05%以下時,將下限設為0%較佳,但工業上很難將Cr含量製成0%,所以Cr往往含0.005%以上。 再者,以提高磁性特性的觀點而言,亦可添加Ni、Co、Cu。範圍為Ni:0.1~5%、Co:0.1~5%、Cu:0.05~2%較佳。 其次針對本發明的鋼板的製造方法來加以說明。 本發明中限制上述的組成成分範圍是很重要的,對於製造條件並無特別限定,可以按照普通的無方向性電磁鋼板來製造。亦即將以轉爐所吹氧(吹練)的熔鋼予以脫氣處理,且調整成預定的成分,接著進行鑄造、熱間輥軋。熱間輥軋時的精加工退火溫度、捲繞溫度並無特別規定,照平常處理就行。又可進行熱輥後的熱軋板退火,但並不是必須。接著,藉由一次冷間輥軋、或是在2次以上的冷間輥軋當中夾有中間退火,來設定預定的板厚後,進行精加工退火。 實施例 將在轉爐吹氧(吹練)所得的熔鋼予以脫氣處理之後進行鑄造,來製作表1-1及1-2所示之成分的鋼胚。之後進行1140℃×1h的胚加熱後,進行熱間輥軋至板厚2.0mm。在此熱間輥軋精加工溫度為800℃,精加工輥軋後以610℃進行捲繞。該捲繞後以100%N2環境氣氛施以1000℃×30s之熱軋板退火。之後進行冷間輥軋至板厚0.30~0.35mm,再以10%H2-90%N2環境氣氛在表2-1及2-2所示之條件中進行精加工退火,在精加工退火後直接評估磁性特性、或是在消除應力退火後評估磁性特性。磁性測定係由輥軋方向及輥軋直角方向來切出愛波斯坦(Epstein)樣本,進行愛波斯坦測定。 在表2-1以No.1~3顯示的比較例中,Sn及Sb的任1種或2種以及Mo的含量比本發明範圍還低,其結果W19/100的值較高。在以No.7顯示的比較例中,Mo的含量比本發明範圍還多,其結果W19/100的值較高。在以No.23顯示的比較例中,Ti的含量比本發明範圍還多,其結果W15/100及W19/100的值較高。在以No.26顯示的比較例中,Nb的含量比本發明範圍還多,其結果W19/100的值較高。在以No.29顯示的比較例中,V的含量比本發明範圍還多,其結果W19/100的值較高。在表2-2以No.31顯示的比較例中,Zr的含量比本發明範圍還多,其結果W19/100的值較高。在以No.36顯示的比較例中,C的含量比本發明範圍還多,其結果W15/100及W19/100的值較高。在以No.38顯示的比較例中,Al的含量比本發明範圍還多,其結果磁通密度B50的值較低。在以No.43顯示的比較例中,N的含量比本發明範圍還多,其結果W15/100及W19/100的值較高。在以No.44顯示的比較例中,S的含量比本發明範圍還多,其結果W15/100及W19/100的值較高。在以No.47顯示的比較例中,Mn的含量比本發明範圍還多,其結果磁通密度B50的值較低,W15/100及W19/100的值也都較高。又在板厚是與No.1~47所顯示的例相異之以No.48顯示的比較例中,Sn及Sb的任1種或2種以及Mo的含量比本發明範圍還低,而比以No.49顯示之相同板厚的發明例,W15/100及W19/100的值較高。 另一方面,在本發明例磁通密度B50的值及W19/100的值為良好,可得到在高磁場域中具有低鐵損的材料。 〔第1圖〕表示Sb添加量與鐵損的關係之圖。 〔第2圖〕表示Mo添加量與鐵損的關係之圖。
权利要求:
Claims (5) [1] 一種無方向性電磁鋼板,其係包含:以質量%計,C:0.005%以下、Si:5%以下、Al:3%以下、Mn:5%以下、S:0.005%以下、P:0.2%以下、N:0.005%以下、Mo:0.001~0.04%、Ti:0.0030%以下、Nb:0.0050%以下、V:0.0050%以下,以及Zr:0.0020%以下,且含有Sb以及Sn之任1種或2種合計0.001~0.1%,殘餘部分為鐵以及不可避免的不純物之組成成分所成。 [2] 如申請專利範圍第1項所述之無方向性電磁鋼板,其中,前述組成成分係更含有以質量%計,Ca:0.001~0.01%、Mg:0.0005~0.005%以及REM:0.001~0.05%的1種或2種以上。 [3] 如申請專利範圍第1項或第2項所述之無方向性電磁鋼板,其中,前述組成成分係更含有以質量%計,Cr:0.4~5%。 [4] 如申請專利範圍第1項或第2項所述之無方向性電磁鋼板,其中,前述組成成分係更含有以質量%計,Ni:0.1~5%、Co:0.1~5%以及Cu:0.05~2%之1種或2種以上。 [5] 如申請專利範圍第3項所述之無方向性電磁鋼板,其中,前述組成成分係更含有以質量%計,Ni:0.1~5%、Co:0.1~5%以及Cu:0.05~2%之1種或2種以上。
类似技术:
公开号 | 公开日 | 专利标题 TWI504762B|2015-10-21|Non - directional electromagnetic steel plate JP4510911B2|2010-07-28|高周波用無方向性電磁鋼鋳片の製造方法 JP4616935B2|2011-01-19|無方向性電磁鋼板及びその製造方法 JP2005336503A|2005-12-08|鉄損に優れた無方向性電磁鋼板およびその製造方法 JP5263012B2|2013-08-14|無方向性電磁鋼板およびその製造方法 CN110678568A|2020-01-10|无方向性电磁钢板及其制造方法 JP6821055B2|2021-01-27|無方向性電磁鋼板およびその製造方法 TWI551694B|2016-10-01|高頻率鐵損特性優良的無方向性電磁鋼板 TWI550104B|2016-09-21|高頻率鐵損特性優良的無方向性電磁鋼板 JP4267437B2|2009-05-27|歪取焼鈍後の磁気特性に優れた無方向性電磁鋼板とその製造方法 KR102013820B1|2019-08-23|무방향성 전기강판 및 그의 제조방법 KR102264103B1|2021-06-10|리사이클성이 우수한 무방향성 전기 강판 JP6123234B2|2017-05-10|電磁鋼板 JP5560923B2|2014-07-30|圧延方向の磁気特性に優れた無方向性電磁鋼板の製造方法 KR20210082516A|2021-07-05|무방향성 전기 강판 및 그 제조 방법 KR100872607B1|2008-12-09|펀칭 가공성과 왜곡 제거 소둔 후의 자기 특성이 우수한무방향성 전자 강판과 그 제조 방법 TWI738061B|2021-09-01|無方向性電磁鋼板的製造方法 JP6209998B2|2017-10-11|方向性電磁鋼板の製造方法 JP2017066425A|2017-04-06|無方向性電磁鋼板およびその製造方法 JP2001140046A|2001-05-22|高磁場特性に優れた無方向性電磁鋼板およびその製造方法
同族专利:
公开号 | 公开日 EP2762591A1|2014-08-06| CN103827333B|2016-09-21| WO2013046661A1|2013-04-04| US20140345751A1|2014-11-27| KR20140044929A|2014-04-15| KR101682284B1|2016-12-05| CN103827333A|2014-05-28| MX2014003083A|2014-04-25| JPWO2013046661A1|2015-03-26| EP2762591B1|2020-02-26| JP5733409B2|2015-06-10| US9466411B2|2016-10-11| TWI504762B|2015-10-21| EP2762591A4|2015-07-15| MX353669B|2018-01-23| WO2013046661A8|2014-04-10|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题 TWI557240B|2014-08-20|2016-11-11|Jfe Steel Corp|Excellent non-directional electrical steel plate with excellent magnetic properties| US10102951B2|2013-03-13|2018-10-16|Jfe Steel Corporation|Non-oriented electrical steel sheet having excellent magnetic properties| US10597759B2|2013-08-20|2020-03-24|Jfe Steel Corporation|Non-oriented electrical steel sheet having high magnetic flux density and motor|WO1993008313A1|1991-10-22|1993-04-29|Pohang Iron & Steel Co., Ltd.|Nonoriented electrical steel sheets with superior magnetic properties, and methods for manufacturing thereof| JPH06108149A|1992-09-29|1994-04-19|Nippon Steel Corp|需要家焼鈍後の鉄損が極めて優れた無方向性珪素鋼板の製造方法| JPH0897023A|1994-09-29|1996-04-12|Kawasaki Steel Corp|鉄損特性の優れた無方向性けい素鋼板の製造方法| JP2888226B2|1996-12-17|1999-05-10|日本鋼管株式会社|鉄損の低い無方向性電磁鋼板| US6139650A|1997-03-18|2000-10-31|Nkk Corporation|Non-oriented electromagnetic steel sheet and method for manufacturing the same| JP3458682B2|1997-11-28|2003-10-20|Jfeスチール株式会社|歪取り焼鈍後の磁気特性に優れる無方向性電磁鋼板およびその製造方法| US6436199B1|1999-09-03|2002-08-20|Kawasaki Steel Corporation|Non-oriented magnetic steel sheet having low iron loss and high magnetic flux density and manufacturing method therefor| KR100479992B1|1999-09-22|2005-03-30|주식회사 포스코|자성이 우수한 무방향성 전기강판 및 그 제조방법| JP4276391B2|2001-07-02|2009-06-10|新日本製鐵株式会社|高級無方向性電磁鋼板| JP3835227B2|2001-09-21|2006-10-18|住友金属工業株式会社|無方向性電磁鋼板とその製造方法| JP4319817B2|2001-11-19|2009-08-26|新日本製鐵株式会社|耐塩酸腐食性および耐硫酸腐食性に優れた低合金鋼およびその溶接継手| EP1501951B2|2002-05-08|2013-08-28|Ak Steel Properties, Inc.|Method of continuous casting non-oriented electrical steel strip| JP4718749B2|2002-08-06|2011-07-06|Jfeスチール株式会社|回転機用高磁束密度無方向性電磁鋼板及び回転機用部材| EP2489753B1|2002-12-05|2019-02-13|JFE Steel Corporation|Non-oriented magnetic steel sheet and method for production thereof| US20050000596A1|2003-05-14|2005-01-06|Ak Properties Inc.|Method for production of non-oriented electrical steel strip| US7922834B2|2005-07-07|2011-04-12|Sumitomo Metal Industries, Ltd.|Non-oriented electrical steel sheet and production process thereof| WO2007144964A1|2006-06-16|2007-12-21|Nippon Steel Corporation|高強度電磁鋼板およびその製造方法| KR101302895B1|2010-02-25|2013-09-06|신닛테츠스미킨 카부시키카이샤|무방향성 전자기 강판|KR20150118813A|2014-04-15|2015-10-23|삼성전자주식회사|햅틱 정보 운용 방법 및 이를 지원하는 전자 장치| JP5975076B2|2014-08-27|2016-08-23|Jfeスチール株式会社|無方向性電磁鋼板およびその製造方法| CN107075640A|2014-10-30|2017-08-18|杰富意钢铁株式会社|无取向性电磁钢板和无取向性电磁钢板的制造方法| JP6020863B2|2015-01-07|2016-11-02|Jfeスチール株式会社|無方向性電磁鋼板およびその製造方法| JP6048699B2|2015-02-18|2016-12-21|Jfeスチール株式会社|無方向性電磁鋼板とその製造方法ならびにモータコア| JP6476979B2|2015-02-19|2019-03-06|新日鐵住金株式会社|無方向性電磁鋼板およびその製造方法| JP6241633B2|2015-02-24|2017-12-06|Jfeスチール株式会社|無方向性電磁鋼板の製造方法| KR102062184B1|2015-08-04|2020-01-03|제이에프이 스틸 가부시키가이샤|자기 특성이 우수한 무방향성 전자 강판의 제조 방법| WO2017086036A1|2015-11-20|2017-05-26|Jfeスチール株式会社|無方向性電磁鋼板の製造方法| JP6402865B2|2015-11-20|2018-10-10|Jfeスチール株式会社|無方向性電磁鋼板の製造方法| JP6406522B2|2015-12-09|2018-10-17|Jfeスチール株式会社|無方向性電磁鋼板の製造方法| KR101701194B1|2015-12-23|2017-02-01|주식회사 포스코|무방향성 전기강판 및 그 제조방법| KR101892231B1|2016-12-19|2018-08-27|주식회사 포스코|무방향성 전기강판 및 그 제조방법| WO2018131712A1|2017-01-16|2018-07-19|新日鐵住金株式会社|無方向性電磁鋼板| JP6665794B2|2017-01-17|2020-03-13|Jfeスチール株式会社|無方向性電磁鋼板およびその製造方法| JP6738047B2|2017-05-31|2020-08-12|Jfeスチール株式会社|無方向性電磁鋼板とその製造方法| JP6828814B2|2017-06-02|2021-02-10|日本製鉄株式会社|無方向性電磁鋼板| RU2650938C1|2017-11-20|2018-04-18|Юлия Алексеевна Щепочкина|Сплав на основе железа| RU2660789C1|2017-12-19|2018-07-09|Юлия Алексеевна Щепочкина|Сплав на основе железа| CN108374123A|2018-03-29|2018-08-07|张可池|一种含有稀有元素的磁钢及其制备方法| KR102120276B1|2018-09-27|2020-06-08|주식회사 포스코|무방향성 전기강판 및 그 제조방법| CN111471941B|2020-04-27|2022-02-01|马鞍山钢铁股份有限公司|一种屈服强度600MPa级新能源汽车驱动电机转子用高强无取向硅钢及其制造方法|
法律状态:
优先权:
[返回顶部]
申请号 | 申请日 | 专利标题 JP2011211553||2011-09-27|| 相关专利
Sulfonates, polymers, resist compositions and patterning process
Washing machine
Washing machine
Device for fixture finishing and tension adjusting of membrane
Structure for Equipping Band in a Plane Cathode Ray Tube
Process for preparation of 7 alpha-carboxyl 9, 11-epoxy steroids and intermediates useful therein an
国家/地区
|